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Fig. 3—Reflection coefficient of isolating slug.
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Fig. 5—Transmission loss of T junction,
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Correspondence

Conditions for Maximum Power
Transfer*

It is sometimes of interest to ask for the
conditions of maximum power transfer from
a fixed source into a load constrained to vary
over an arbitrary contour in the impedance
plane. There exists a simple graphical solu-
tion to this question as shown below. Con-
sider the circuit shown in Fig. 1.

If P is the power delivered to the load
and Po=(E2/4R;) is the available power
from the source, then

P 4r

P i esar W

giving

ERG) e

=(2%°—1>ﬂ~1, @

453
where
R X X
12:&;’ x:}é;’ :‘gs—k‘;v
z Zs
Z=Es’ ZS=E

Eq. (2) represents a family of circles in the
z plane of radius v/(2Po/P-1%—1, whose
centers lie along the line x=—x, through
the point z* as shown in Fig. 2.
If @ is the distance from unity to the
center of a circle along the line x=—ux;, the
equation for the family of circles becomes

[r— @+ D+ @+u)=(@+12~1,

where a=2(Po/P—1).

To find the impedance for maximum
power transfer to Z, on the plane in whichz
is drawn, strike a line parallel to the 7 axis
through the point z,*=1—jx,. Move an arbi-
trary distance ¢ from unity along this line,
and from this point draw a circle of radius

1

J SUU—
Zg=Rg+iXg

Z=R+jX

Fig. 1.

Fig. 2,

% plana

Fig. 3.

* Received by the PGMTT, June 15, 1961.



454

v/ (a+17—1. Repeat until the circle is just
tangent to the given % curve. The point of
tangency gives the impedance Z, for maxi-
mum transfer, while

as shown in Fig. 3.

Note that maximum power transfer does
not occur at the point of closest approach
to Z,*.

CARL SHULMAN
School of Technology
Dept. of Elec. Engrg.

The City College
New York, N. Y.

A Comment on the Scattering
Matrix of Cascaded 2n-Ports™

Epprecht! calculated the scattering ma-
trix of two cascaded two-ports. Redheffer?
does the same for the 2z-port using non-
standard notation. This note will comment
on the physical interpretation of the con-
stituents of the resultant-scattering matrix.
To use the notation of Fig. 1, the scattering
matrix constituents are

Su =514+ 512'Su”" (1 — 522"S1”") S

S12 = S1/(1 — S1/S) 151"

Sey = Sar”’(1 — S$32'S1y”) 7182y’

Sag = Soo’" 4 Sa1"Se’ (1 — S1"Sae)71512". (1)

Fig. 1—S "and S’’ are # Xn scattering matrices of the
respective networks. S is the scattering matrix of
the resultant network:

S 12”]
522// -

S[E5Y) g
SQII S?ZI SEI“

The interpretation given to these formu-
las is that Sy is the bilinear transformation
of Su through the single primed network,
and S is the bilinear transformation
of S’ through the double primed network.
Both of these results also follow from the

!

9]

* Received by the PGMTT, June 21, 1961. This
research was sponsored by the Electronics Research
Directorate of the Air Force Res. Div., Air Res. and
Dev. Command, under Contract No. AF19(604)7486.
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definition of scattering matrix terms on the
basis of matched termination (<.e., if the out-
put has a matched load, S=0, the input co-
efficient of the double primed network is Sy;”,
which is the output coefficient of the primed
network). Sp and Su are similarly inter-
pretable, with the special case of bilaterally
matched networks being the “star” multi-
plication of Altschuler and Kahn.?

It should also be noted that formulas (1)
are valid when an #-port and an m-port are
cascaded* (or interconnected).

D. J. R. Stock

L. J. Kaplan
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New York University
New York, N. Y.
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Use of Flow Graphs to Evaluate
Mistermination Errors in Loss and
Phase Measurements™

The purpose of this note is to show how
the signal flow graph technique illustrated
by Hunton! leads quite naturally to an ex-
pression for error due to mistermination
when measuring insertion loss and phase.

We start with the flow graph used by
Hunton to represent the tandem connection
of generator, network and load:

a S b
Fre—s , 1 21 2
I'q Su Saa Tr.
by S1a az

With the aid of the nontouching loop rule to
solve the graph, Hunton easily obtained the
result

ba Sat

E 1—ToSu—TnSat TTn(SuSen—S1aSa)

Very little extra work is needed to compute
insertion loss and phase measurement errors
due to mistermination, once the above equa-
tion is availabie.

E is the wave amplitude at the output
port of the generator when terminated in a
matched load Zo. If V, znd Z, represent the

# Received by the PGMTT, June 27, 1961

1J. K. Hunton, “Analysis of microwave measure-
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Thevenin generator voltage and impedance,
then

Zy
E=—""—1,
Zo+ 2z,
Since
1+r
2, = 2yt 12,
1—-1,
= 1_—_& Vv

The above equations together give

Ve S (1—Ty)
=—2— i___FgSII"'FLSZZ‘{— Ty L(S11520—512821) ’
From the flow graph we see that a»=0:Tz.

The total wave amplitude across the load is
therefore

b;

3

¥
Vu=dﬁ+b2=79

) Sa(1-T,)(14Iz) )
AT S —T1S2e+ T, TL(S11S22—S512521)

Now the measured insertion ratio R, is ob-
tained by dividing the load voltage with net-
work removed by the load voltage with net-
work inserted. To remove the network, we
set Su, Sa equal to zero and Sip, Su to unity.
The result is

=1 — SasTr—Suly4ToI'n(S11S2e—S12521) )
(A—T4TL)Sx

If the source and load were reflectionless
(T,=T1=0), the corresponding insertion
ratioRy would be just

Rp,

ool
ASQI
Hence, the quotient
Ry
182 =81 T+ TL(S11S22—S12521)
= 1-T,y

provides the measurement error due to net-
work mistermination. In the common case
where Iy and T, are <1, Q simplifies to

0~1+a4

where A, the fractional error in nepers and
radians, is given by

A= — Syl — Sael'z
+ Tzl A+ S1eSes — S12521).

For reciprocal structures, Sy is equal to
Sa1; these in turn are equal to the reciprocal
of the design insertion ratio R,.

As an example of the application of the
expression for A, consider the measurement
of a network having | Su|=Sa|=0.3 (cor-
responding to a VSWR of 1.85) and |Su!
=[Su|=1. Then, if source and load were
such that |I,|=|Tz]=0.02 (VSWR of
1.04), we could expect maximum errors of
0.11 db or 0.73 degrees, depending on the
phases of the S’s and I'’s.

DANIEL LEED
Bell Telephone Labs.
Murray Hill, N. J.



